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1. Introduction

Unique factorization, often first encountered in the realm of integers, holds deep signif-
icance across vast areas of mathematics. Historically, the ancient Greeks laid some of the
earliest foundations recognizing the significance of prime numbers. Euclid’s monumental
work, the “Elements”, which dates back to around 300 BC, contained seminal ideas about
numbers and their divisibility. Although the Greeks worked extensively with numbers, the
explicit statement and appreciation of unique factorization as a fundamental theorem of
arithmetic were not fully crystallized until Gauss’s treatment in the 19th century.

The beauty and utility of unique factorization go beyond mere historical appreciation. It
offers a structured way to decompose elements, aiding in simplifying mathematical expres-
sions, solving intricate Diophantine equations, understanding number-theoretic functions,
and probing deep results in analytic number theory. The predictability it provides is an
essential tool for mathematicians.

Generalizing to broader algebraic contexts, the concept finds its place in ring theory.
Unique Factorization Domains (UFDs) extend the property to certain commutative rings.
Yet, not all rings enjoy this unique factorization privilege. This realization led to further
classifications, with Principal Ideal Domains (PIDs) and Euclidean Domains standing out as
generalizations where unique factorization still holds.

Some cornerstone theorems are intimately tied with this property. Gauss’s Lemma, for
instance, bridges the world of integers and rationals, ensuring that irreducibility in one
implies irreducibility in the other. The Fundamental Theorem of Algebra, promising a root
for every non-constant polynomial, combined with factorization properties, assures a unique
breakdown for such polynomials into linear factors. Then there’s Dirichlet’s Theorem on
Arithmetic Progressions, a deep result in number theory, guaranteeing infinite primes in
arithmetic progressions, a proof of which leans heavily on unique factorization.

In the grand tapestry of mathematics, unique factorization, whether in the integers or
its generalizations in ring theory, remains one of the fundamental threads weaving through
centuries of mathematical thought, tying together seemingly disparate areas into a cohesive
whole.

2. Fundamental Theorem of Arithmetic

The concept of prime numbers has ancient origins, with civilizations such as the ancient
Egyptians and Greeks recognizing their significance. However, it was the Greeks who laid
the foundational work for modern number theory.
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Euclid’s “Elements,” a masterpiece from around 300 BC, dedicates an entire book (Book
IX) to number theory, with propositions related to prime numbers. Among his many contri-
butions, Proposition 20 of Book IX offers a procedure (resembling the modern-day Euclidean
Algorithm) to find the greatest common divisor of two numbers. His proof in Proposition
20 indirectly affirms that numbers have unique prime factorizations, although this wasn’t
explicitly stated as the Fundamental Theorem of Arithmetic at the time.

The explicit understanding and articulation of the Fundamental Theorem of Arithmetic
took many centuries to mature. It wasn’t until the 19th century that Carl Friedrich Gauss,
one of the greatest mathematicians of all time, coined the term “Fundamental Theorem
of Arithmetic” in his groundbreaking work “Disquisitiones Arithmeticae” in 1801. Gauss’s
work was pivotal not just for the articulation of the theorem but also for setting the tone
for rigorous mathematical proofs in number theory.

In between Euclid and Gauss, many mathematicians undoubtedly recognized the impor-
tance of prime factorization, but it’s Gauss’s treatment that remains most influential and
marks the theorem’s modern formulation.

For every integer n > 1, there exist prime numbers p1, p2, . . . , pk (not necessarily distinct)
and positive integers e1, e2, . . . , ek such that:

n = pe11 pe22 . . . pekk
Moreover, this representation is unique, up to the order of the factors. In other words, if

there is another set of primes q1, q2, . . . , qm and integers f1, f2, . . . , fm such that:

n = qf11 qf22 . . . qfmm
then k = m, and after rearranging if necessary, pi = qi and ei = fi for all i.

3. Algebraic Properties of the Integers Z

To understand how factorization works in integer-like algebraic structures, we need to first
understand what properties does integers have. These properties are summarized as what is
called rings.

Definition. A ring R is a set with two binary operations addition + and multiplication ·
such that

(A1). associativity of addition: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R
(A2). additive identity: 0 ∈ R such that a+ 0 = a = 0 + a for all a ∈ R
(A3). additive inverse: for all a ∈ R, there exists −a ∈ R such that a+(−a) = 0 = (−a)+a.
(A4). commutativity of addition: (a+ b = b+ a) for all a, b ∈ R
(M1). associativity of multiplication: (a · b) · c = a · (b · c) for all a, b, c ∈ R.
(M2). multiplicative identity: 1 ∈ R such that a · 1 = a = 1 · a
(DL). distributive law: a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

Note that there we always assume the ring is unital. There are textbooks that do not
require R to contain multiplicative identity.

In particular, one may realize two more properties of integers: multiplication is commu-
tative and there is no zero-divisors.

Definition. An element r ∈ R is called a zero-divisor if there is another element s ̸= 0 ∈ R
such that rs = 0 or sr = 0.
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Example. Consider Z/6Z = {[m] : m = 0, 1, 2, 3, 4, 5} be the collection of equivalence class
modulo 6. 2 is a zero-divisor since 2 · 3 = 6 ≡ 0 mod 6.

Now, let’s give a more complete description of the algebraic properties of the integer Z.

Definition. An integral domain (or domain for short) is a commutative ring which does
not contain any zero-divisor. That means, in addition to the ring axioms, integral domain
also satisfies

(M3). commutativity of multiplication: a · b = b · a for all a, b ∈ R
(M4). no zero-divisor: for all a ∈ R, no non-zero element b ̸= 0 ∈ R exists such that ab = 0

or ba = 0.

Note that if we require, in addition, that every element has an multiplicative inverse, then
the commutative ring becomes a field. One way we can add multiplicative inverses in is via
ring of fraction. This construction will be useful in the study of commutative algebra and
algebraic geometry.

To generalize the notion of factorization, we need to introduce a key concepts that turn
our usual description of factorization in terms of numbers in the general ring language.

Definition. An ideal of R is a subset I ⊆ R such that I is an additive subgroup of R and
for any x ∈ I and a ∈ R, ax ∈ I. That means

I =
{∑

aixi : ai ∈ R, xi ∈ I
}

Example. Consider the ring of integers Z. All multiples of 2 form an ideal. That is,
(2) = {0,±2,±4,±6, . . .}. In fact, pick any number n ∈ Z, (n) = {0,±n,±2n,±3n, . . .} =
{an : a ∈ Z}. All ideals in Z are of this form.

Definition. Given a set of elements a1, . . . , an ∈ R, we call I = (a1, . . . , an) the ideal
generated by a1, . . . , an if

I =
{∑

aixi : xi ∈ R
}
.

This means, we have a different description of factorization in Z. Namely, instead of asking
how to factorize 6, we can ask how to factorize the entire ideal generated by 6. That is,
instead of 6 = 2 · 3, we can write (6) = (2)(3).
We can also multiply two ideals.

Definition. Given two ideals I, J ⊆ R, we can define their product as

I · J =
{∑

aibi : ai ∈ I, bi ∈ J
}
.

It is clear that this multiplication of ideals is commutative and associative, hence we
can explicitly write that if I = (a1, . . . , an) and J = (b1, . . . , bm), then IJ = (aibj) where
i = 1, . . . , n and j = 1, . . . ,m.
This is a handy tool when we want to generalize factorization to ideals.

4. Creating New Rings

The ring of integers Z is too nice to be interesting for mathematicians. (I know, it sounds
ridiculous, but mathematicians are mathematicians.) So we want to build new rings on the
existing ones we have. There are a few ways to do so, such as a subring or quotient ring. In
this talk, we are particularly interested in adjoining new elements to our ring. The difference
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is, we are taking smaller structures by doing subring and quotient, but we get bigger (and
perhaps more ugly) structures by doing adjoining.

To create new ring from R, we can adjoin an element α /∈ R. We define

R[α] =

{
n∑
0

ria
i : ri ∈ R

}
.

Of course, take α ∈ R, R[α] = R. Please verify this so that this definition makes sense.

Example. Let R = Z and α = i the imaginary unit.

Z[i] = {a+ bi : a, b ∈ Z} .

Example. Let R = Z and α =
√
2 the imaginary unit.

Z[
√
2] =

{
a+ b

√
2 : a, b ∈ Z

}
.

Example. Let R = Z and α =
√
−5 the imaginary unit.

Z[
√
−5] =

{
a+ b

√
−5 : a, b ∈ Z

}
.

Spoiler : we will see this Z[
√
−5] is our trouble-maker in unique factorization.

Note. If you want more math, we can consider all these adjoin actions as taking quotient of
polynomial ring. That is

Z[
√
2] = Z[x]/(x2 − 2)

where (x2 − 2) is the ideal generated by x2 − 2. Another example if the Gaussian integers.

Z[i] = Z[x]/(x2 + 1).

Nowever, there is no way to write, say, Z[π] in this form because π is not an algebraic integer.

5. Factorization in Rings and Domains

To do factorization, let’s first observe what ingredients we need. For example

21 = 3 · 7.
Here, we factor the number into product of 3 and 7 and both of these numbers are primes.
In addition, consider

12 = 2 · 6 = 22 · 3.
We want to factorize this number completely into the smallest components possible. This
corresponds to the notion of irreducible element in R. Further, note that

15 = 3 · 5 = −3 · −5.

We usually dismiss the case by multiplying −1 on both sides and require factors to be
positive. We want to identify exactly what these elements, called units, are. Hence, we
introduce the following definitions:

Definition. Let u ∈ R. We call u a unit if it has multiplicative inverse. That means, there
exists r ∈ R such that ur = ru = 1.

Definition. Let r, s ∈ R. We say they are associates of each other if there exists a unit u
such that r = us.
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Example. In Z, 2 and −2 are associates because −1 is a unit (that is a multiplicative inverse
of itself) and −2 = 2 · (−1).

We we think about what it means to be a prime, the intuitive answer might be it cannot
be further factorized. That means the only divisor of it is 1 and itself. This is what we called
irreducible in ring theory.

Definition. Give an element r ∈ R. It is reducible if there exists a, b ∈ R that is not a
unit such that r = ab. An element is called irreducible if it is not reducible.

Another way to see prime in Z is to say that if p divides ab, then it divides either a or b.
Let’s formulate that into a definition.

Definition. Suppose p|ab. Then p is prime if and only if p|a or p|b. p|a means there exists
r ∈ R such that a = rp.

Note that in domains, prime elements are irreducible. The converse if not true. For
example, in Z[

√
−5], 3 is irreducible but not a prime. However, the following is true:

Theorem. Prime and irreducible are equivalent in unique factorization domains (UFDs).

This is the object that we are most interested in in today’s talk. We want to explore when
domains are UFDs and when they are not. This also justifies the fact that why there are
two equivalent way of defining primes in Z.

6. Pythagorean Triples and Gaussian Integers

Here we want to provide a tangible example for why studying unique factorization is useful:
characterizing all Pythagorean triples.

Given a Pythagorean triple (a, b, c), we have:

a2 + b2 = c2

From this relation, the hypotenuse c can be expressed as:

c =
√
a2 + b2

Consider the Gaussian integer z = a+ bi. The norm N(z) is given by:

N(z) = z · z = (a+ bi)(a− bi) = a2 + b2 = c2

The ring of Gaussian integers, Z[i], possesses unique factorization, akin to the integers
Z. Any non-zero, non-unit Gaussian integer can be uniquely represented as a product of
Gaussian primes (up to ordering and units). The units in Z[i] are ±1 and ±i.

For our Gaussian integer z = a + bi, where neither a nor b are both even (otherwise, the
triple is not primitive), we have N(z) = c2.
If z is a Gaussian prime, its norm N(z) must also be a prime in Z. However, this is a

contradiction since c2 isn’t prime. Therefore, z is not a Gaussian prime.
Now, factor z as z = p · q, where neither p nor q are units.
Given the unique factorization in Z[i]:

N(z) = N(p)N(q)

or

c2 = N(p)N(q)
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If N(p) = c and N(q) = c, one possibility is that p and q are associates, i.e., one is a unit
times the other.

Without loss of generality, let q = up, where u is a unit in Z[i]. For z = p ·up, and u = ±i,
numbers p and q are of the form m± ni, where m,n ∈ Z.
Expanding p · q:

(m+ ni)(m− ni) = m2 + n2

gives the parameterization:
a = m2 − n2

b = 2mn

c = m2 + n2

Thus, through the properties of Gaussian integers, we have derived the characterization
of primitive Pythagorean triples.

7. Unique Factorization Domain: Definition and Examples

Definition. A unique factorization domain (UFD) is a domain such that every non-
zero non-unit element r ∈ R satisfies

(1) r = p1p2 . . . pn for some irreducibles p1, . . . , pn ∈ R where n ≥ 1 and
(2) the decomposition is unique up to associates: if r = p1p2 . . . pn = q1q2 . . . qm, then

n = m and pi = ujqj for all i = 1, . . . , n.

There are a dozen equivalent statements about UFD. If you are interested, it is listed on
Wikipedia, though it will require more advanced tools in commutative algebra.

There are also more than enough facts about UFD to fill a full course but those are too
powerful for the discussion today.

Now let’s see some examples of UFD. One of the first goals is to classify some important
classes of UFDs so that when I am doing research, I do not need to check every single time
if I am working with a UFD. The discovery of UFD is attributed to Ernst Eduard Kummer
who mistakenly assume Z[

√
−5] is a UFD and observed some ridiculous results.

In the 19th century, Ernst Eduard Kummer was studying higher reciprocity laws and Fer-
mat’s Last Theorem for specific prime exponents. He initially believed that certain rings
of algebraic integers in cyclotomic fields were UFDs. However, he discovered that this as-
sumption was wrong when he encountered problems with the ring Z[

√
−5], realizing that

there were ”ideal numbers” or ”ideals” that behaved as if they factored uniquely, even if the
numbers themselves did not.

Kummer’s discovery of the failure of unique factorization in some number rings led him to
introduce the concept of ”ideals” in rings, which eventually became a foundational part of
modern algebraic number theory. While the mistake led to this important advancement, it’s
worth noting that Kummer himself was not ”confused” for a long time; rather, the discovery
of the non-UFD nature of certain rings was an integral step in his development of the theory
of ideals.

The take away of the story is: if you find your abstract algebra class on ring theory too
hard, Kummer is the one to blame.

So let’s explore some examples where there is unique factorization first.

Example. The most familiar example is the ring of integers Z. Its unique factorization is
guaranteed by the fundamental theorem of arithmetic.
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Example. The Gaussian integers Z[i] is a UFD. Why? Take all primes in Z and write it in
terms of irredicibles in Z[i]. There are three cases:

(1) 2 = (1 + i)(1− i) = −i(1− i)2.
(2) 3 = 3
(3) 5 = (1 + 2i)(1− 2i)

Example. The polynomial ring over a field k[x] is a UFD. This is why you can do your
homework on factorizing polynomials (or at least it’s possible to do, not sure if you actually
did it or not).

Example. Consider the rings of the form Z[
√
d], where d ∈ N some positive square-free

integers. Z[
√
2], Z[

√
3], Z[

√
5], Z[

√
7], Z[

√
11] are all UFDs.

Example. Now consider the rings of the form Z[
√
−d], where d ∈ N some positive square-free

integers. We have a very satisfying result classifying all UFDs of this form.

Theorem (Stark–Heegner Theorem). There are exactly nine Heegner number. They are 1,
2, 3, 7, 11, 19, 43, 67, and 163.

Corollary. Given the ring Z[
√
−d] for some square-free natural number d ∈ N. Only Z[i] =

Z[
√
−1], Z[

√
−2], Z[

√
−3], Z[

√
−7], Z[

√
−11], Z[

√
−19], Z[

√
−43], Z[

√
−67], and Z[

√
−163]

are the only unique factorization domains.

This is a very satisfying result for mathematicians. We usually will get something ambigu-
ous such as anything that satisfies these three conditions will have some shared properties,
rather than having an explicit characterization of all possible cases.

8. How Un-unique is Factorization in Non-UFD

We want to take a close look at non-UFDs in this section. In particular, Z[
√
−5].

Imagine factorizing 6 in Z[
√
−5].

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

We can check that 2, 3, 1 +
√
−5, 1 −

√
−5 are all irreducible. However, none of them are

primes. That means they do not give a good enough factorization in Z[
√
−5].

Now consider the factorization in the ideal.

(6) = (2)(3) = (1 +
√
−5)(1−

√
−5).

This does not look like a complete factorization, so we can make it better. But how?
The answer is to make the ideal bigger.

(6) = (2, 1−
√
−5)(2, 1+

√
−5)(3, 1−

√
−5)(3, 1−

√
−5) = (2, 1−

√
−5)2(3, 1−

√
−5)(3, 1−

√
−5)

by citing that (2, 1−
√
−5) = (2, 1+

√
−5). Verify this. We can check that (2, 1−

√
−5), (3, 1−√

−5), (3, 1 −
√
−5) are prime ideals (surprise, surprise!). Now we want to generalize this

idea and count how many ways we can factorize a number in ring theoretical sense. We will
introduce the ideal class group.
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9. Failure of Unique Factorization: Ideal Class Groups

We have introduced the notion of ideals. But we need to understand how they differ from
each other. As always, before investigating on how strucutres are different, we need to know
what does it mean to be “the same”.

Definition. Let I, J ⊆ R be two ideals of R. We say I and J are similar, denoted by
I ∼ J , if there exists some λ ∈ F such that λI = J , where F is the number field we are
working in.

The definition of number field is abstract. If you are interested, here it is:

Definition. A number field is a subfield in C that is finite-dimensional as a vector space
over Q.

Essentially, this means that given, for example, Z[
√
2], the number field is just Q[

√
2].

That is, changing integer coefficients to rational coefficients.
More generally, it is the smallest field that contains R.

Example. The number field for Gaussian integer is Z[i] ⊆ Q[i].

Example. The number field for the ring Z[ζ] ⊆ Q[ζ] where ζ is the roots of unity.

Proposition. If I ∼ I ′, then IJ ∼ I ′J .

We write I ∼ J because it is in fact an equivalence relation. (If you know what that is,
verify it.) Now we can collect these equivalence classes, together with ideal multiplication,

forms an abelian group. This is because II⃗ = (1) is principal, so the inverse of ideal is well-
defined. This group is what we called the ideal class group (the group formed by collecting
ideal classes).

Theorem. The ideal class group Cl(F ) is finite.

Example. Consider R = Z[
√
−5], the class group is Z/2Z. The only ideals up to similarity

are (1) and (2, 1 +
√
5).

Theorem. Let R is a domain with F as its number field. If R is an UFD, then Cl(F ) is
trivial. That means, it is a trivial group, singling the unique way of factorization.

Example. Let F = Q[
√
15] be the number field. Cl(F ) = Cl(Q[

√
15]) = C2, the cyclic group

of order 2.

Example. For the number field with roots of unity, Cl(Q[ζ17]) = 1

Example. For the number field with roots of unity, Cl(Q[ζ23]) = 3

Example. For the number field with roots of unity, Cl(Q[ζ31]) = 9

Example. For the number field with roots of unity, Cl(Q[ζ43]) = 211

Example. For the number field with roots of unity, Cl(Q[ζ53]) = 4886

Example. For the number field with roots of unity, Cl(Q[ζ67]) = 853513

Example. For the number field with roots of unity, Cl(Q[ζ163]) = 10834138978768308207500526544
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These examples are just an illustration how how crazy things can get even with gradual
increase of power. And this is among the most understood area of unique factorization.

To fully understand this, it is up to you to build a complete picture. That means, we do not
know (by we, I mean mathematicians not just me). The best attempt is something called
Iwasawa theory, which takes a few hundred pages to prove by itself, involving some very
hard math, such as Galois theory, representation theory, category theory, module theory,
and much more.

If you are interested in solving this puzzle for the community of number theory, I can
provide some more references (including the book proving Iwasawa theory).
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