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1. Introduction

ChatGPT has recently gained significant attention. Many consider it an early model
of general AI, given its capability to handle a wide range of tasks, from crafting recipes
to writing and annotating code. While some speculate that it might one day replace
search engines like Google, others are recalling the story of an apple and a young
Englishman who passed away 70 years ago.

At the age of 24, Alan Turing astounded the world by publishing a paper that in-
troduced the concept of the Turing machine, a foundational protocol for all modern
computers. He posited that anything computable can be emulated by the Turing ma-
chine. This proposition is known as the Church-Turing thesis.

The origins of machine learning are deeply rooted in philosophical inquiries into the
essence of intelligence. What does it mean to be intelligent, and can this quality be
replicated or simulated? Alan Turing, a pioneering figure in the realm of computer sci-
ence and artificial intelligence, approached this profound question with pragmatism.
Instead of delving into the abstract nature of thought, Turing posed a more tangi-
ble query: Can machines be designed to imitate human intelligence? His perspective
shifted the discourse from a purely theoretical debate to a practical challenge, paving
the way for the development and evolution of machine learning as we understand it
today.

In Computing Machinery and Intelligence (1950), Turing begins by posing the in-
triguing question, “Can Machines Think?” Rather than dwell on the philosophical
nuances of “thinking,” he introduces a practical measure known as the Turing Test.
In this test, a machine is deemed intelligent if a human evaluator, through conver-
sation, cannot distinguish it from another human. This innovative approach shifted
the discourse from abstract philosophical debates to tangible challenges in machine
behavior and capabilities. Turing delves into the potential of digital computers, sug-
gesting that with the right programming, they could replicate any human intellectual
activity. He even anticipates the advent of machine learning, envisioning machines
that can adapt and improve over time. Throughout the paper, he also confronts and
rebuts various objections to the concept of machine intelligence, making a compelling
case for the possibilities that lie ahead in the realm of AI.

One of the most significant challenges in realizing general AI has been the con-
straints of resources and computing power. Even if one designs the perfect algorithm
for a machine to execute a task or to self-adapt, the resource requirements might
be astronomical. Consequently, the potential of machine learning couldn’t be fully
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explored until there were substantial advancements in computing technologies. In re-
cent years, breakthroughs in computer engineering have made it possible for humans
to implement simple self-adaptive learning tasks for computers. As a result, machine
learning has garnered immense traction and attention.

2. Classifiers and Regressors

The first thing we need to do is define what we are trying to learn. Suppose we
are running a linear regression on 100 points, finding the best-fit straight line that
describes the relationship. Each point 𝑝 has an𝑥- and𝑦-coordinate 𝑝𝑥 and 𝑝𝑦, and we
want to learn the correct linear equation as a function of𝑥 that maps 𝑝𝑥 ⟼ 𝑝𝑦 as best
as possible. For example, if we want to find the line that describe the relation of the
set {(1, 2), (2, 4), (3, 6),… , (99, 198), (100, 200)}, the linear equation we are looking
for is 𝑦 = 2𝑥.

We can formalize this idea more broadly as follows. The domain set X contains the
objects 𝑥 we are mapping or labeling, and the label set Y contains the labels 𝑦 we
map the objects in X to. Our training data is a set of tuples 𝑝 = (𝑝𝑥, 𝑝𝑦) in X × Y,
which we assume are the output of some “correct” labeling function 𝑓. That is to say,
there exists some function 𝑓 ∶ X → Y such that for all 𝑝,𝑓(𝑝𝑥) = 𝑝𝑦. Our goal is to
guess what this function 𝑓 is, or at least try to approximate it somehow. Importantly,
we want to guess what it is over the entire domain X, not just the subset {𝑝𝑥} ⊆ X.

So our machine learning algorithm is an algorithm that has as its input the domain
set X, label set Y, and training data 𝑆 = {(𝑝𝑥, 𝑝𝑦)} and outputs a function ℎ ∶ X → Y.
This output function is called the predictor, hypothesis, or classifier depending on
the specific use case. ML/AI researchers themselves aren’t incredibly consistent with
their terminology, so we will define them as such:

• A hypothesis is the general case, e.g. a function ℎ ∶ X → Y output by some
algorithm 𝐴. We denote 𝐴(𝑆) to be the hypothesis ℎ output by 𝐴 with training
data 𝑆.

• A classifier is a hypothesis where the label set Y is finite, e.g. categorical. For
example, a binary classifier is a hypothesis where Y = {0, 1} or {−1, 1}.1

• A predictor is a hypothesis where the label setY is infinite; for example,Y = ℝ.
A linear regression is one example.

Finally, we need a way to measure how good or bad we are at approximating 𝑓. For
this, we define a true error or loss function 𝐿𝑓(ℎ) that in some way measures how
different the hypothesis ℎ and correct labeling function 𝑓 are. Usually, 𝐿𝑓(ℎ) outputs
a number or probability, so the function signature is

𝐿𝑓(ℎ) ∶ (X → Y) × (X → Y) → ℝ (or [0, 1])
Usually, the loss function is defined with respect to 𝑓, so the signature is simplified to
𝐿(ℎ) ∶ (X → Y) → ℝ.2 Remember that we have no access to 𝑓, so we cannot calculate
the true error over the whole domain X. Thus we calculate a empirical error 𝐿𝑆 which
is 𝐿 restricted to the training data.

1The values of the labels doesn’t matter, as long as they’re two distinct labels. Which formulation is
chosen is just what makes proving that problem easier.

2Functions that take functions as arguments are called higher order functions. They pop up often in
math and are even more ubiquitous in computer science.
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3. PAC Learnability

The objective of machine learning theory is to design algorithms that output useful
hypotheses. No algorithm can output every possible function X → Y, so we define
hypothesis classes. A hypothesis class H is a class of similar functions X → Y,
and we restrict our algorithm to only output a hypothesis ℎ ∈ H. For example, the
hypothesis class of single-variable linear regressions is the class of functions ℝ → ℝ
such that

ℎ(𝑥) = 𝑎+ 𝑏𝑥 for some 𝑎,𝑏 ∈ ℝ
We want to know whether a hypothesis class can do a machine learning task. One

way to answer this is to define whether it is PAC-learnable, short for “Probably Ap-
proximately Correct-learnable.” The actual definition of PAC-learnable is very tricky,
so we will loosely define it.

Definition. Let H be a hypothesis class of functions X → Y, and let 𝜀 > 0,𝛿 ∈ (0, 1).
H is PAC-learnable if there exists an algorithm such that for any potential correct
labeling function 𝑓 ∶ X → Y and for any randomly selected training data 𝑆 of size at
least 𝑁(𝜖,𝛿), the algorithm returns a hypothesis ℎ ∈ H such that there is at least 1−𝛿
probability that the training error is bounded by

𝐿𝑆(ℎ) ≤ 𝜀.
PAC-learnability, by default, assumes realizability. Realizability means that there

exists ℎ∗ ∈ H such that the true error is completely minimized, e.g. 𝐿𝑓(ℎ∗) = 0. So
we want to use agnostic PAC-learnability, which drops that assumption. In agnostic
PAC-learnability, the bound is given by

𝐿𝑆(ℎ) ≤ min
ℎ∈H

𝐿𝑓(ℎ) + 𝜀.

To recover the definition for PAC-learnability, simply note that if ℎ∗ exists,
min
ℎ∈H

𝐿𝑓(ℎ) = 0.

𝛿 is our confidence parameter, corresponding to the “probably”, and 𝜀 is an error
bound, corresponding to the “approximately correct.” What this definition says is that
we can write an algorithm for H that can get us within a reasonable error bound of
any desired labeling function with reasonable confidence with the only requirement
being a sufficiently large training dataset.

One nice thing we can show with this definition is that if our hypothesis class is
finite, it is agnostic PAC-learnable. This is especially nice because every practical hy-
pothesis class is finite; we only have finite precision arithmetic on computers, no
matter how big the computer.

4. No Free Lunch

PAC-learnability gives us a way to identify if a hypothesis class can be used to learn
any labeling function. One might ask why we have to make many different hypothesis
classes and. algorithms instead of just using one PAC-learnable hypothesis class.
The answer to that is the No Free Lunch theorem, which tells us that for any learning
algorithm, there always exists a task that learning algorithmwill fail on. The statement
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and proof for the No Free Lunch theorem is once again complicated, so we will do
sketches.
Theorem. (No Free Lunch) Let 𝐴 be any learning algorithm over the domain X and
labels Y with respect to some loss function 𝐿(ℎ). Let 𝑚 be any finite number less than
|X|/2, representing the size of the training data. Then there exists some 𝑓 ∶ X → Y
such that PAC-learnability fails; that is, that we cannot bound the true error 𝐿𝑓(ℎ) with
reasonable confidence.

Suppose we are doing binary classification, so let Y = {−1, 1}, and let our training
data be 𝑆 = {𝑥1, 𝑥2,…𝑥𝑚}. For any hypothesis 𝐴(𝑆) = ℎ that our algorithm returns,
ℎ has to give some labeling to every element in X.

We can make ℎ fail by taking advantage of the fact that the algorithm only gets to
see less than half of the elements in X. Set the correct labeling function to be

𝑓 ∶ X → {−1, 1} ∶ 𝑓(𝑥) = {ℎ(𝑥) if 𝑥 ∈ 𝑆
−ℎ(𝑥) if 𝑥 ∈ X/𝑆

𝐴 only has access to the training data 𝑆 and empirical error 𝐿𝑆(ℎ), so it will return ℎ,
but we have set it so outside of the training data, 𝑓 is exactly opposite of ℎ. Therefore
our algorithm has failed to bound the true error.

The No Free Lunch theorem exists because there are many functions X → {−1,1}.
This lets us always pick an adversarial task the algorithm will fail on. The No Free
Lunch theorem is why prior knowledge is important in machine learning, because if
we don’t pick the right algorithm and hypothesis class for the task, there is a possi-
bility we run into an adversarial example. One might ask whether we can make our
hypothesis class the set of all functions X → {−1, 1}. However, if X is infinite, that
hypothesis class is not PAC-learnable. To understand why, we turn to VC-dimension.

5. VC-Dimension and Shattering

PAC-learnability is a nice definition to have, but it is very unwieldy to work with.
Hence we look at it from another angle. Recall that in the No Free Lunch theorem, the
proof relies on constructing an adversarial example; the VC-dimension3 will focus on
the behavior of a hypothesis class faced with adversarial examples.

We will focus on binary classification, as VC-dimension only applies there. Let 𝐶 ⊂
X. When constructing an adversarial example, we had taken some function from the
set of all functions𝐶 to {0, 1}.Define the restriction ofH onto𝐶 as the set of functions
𝐶 → {0, 1} that can be derived from H. Formally,

H𝐶 = {𝑞 ∶ 𝐶 → {0, 1} ∣ ∃ ℎ ∈ H such that 𝑞(𝑐) = ℎ(𝑐) ∀ 𝑐 ∈ 𝐶}
H shatters 𝐶 if the restriction H𝐶 equals the set of all functions 𝐶 → {0, 1}. This

means for any classification of the elements in 𝐶, we can perfectly match that with
some hypothesis ℎ.

We can finally define the VC-dimension:
Definition. The VC-dimension of a hypothesis class H of functions X → {0, 1} is the
cardinality of the largest subset 𝐶 ⊂ X that H shatters.

3Short for Vapnik–Chervonenkis dimension, named after its inventors Vladimir Vapnik and Alexey
Chervonenkis.
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Recall that finite hypothesis classes are agnostic PAC-learnable. It turns out that
there is a deep link between VC-dimension and PAC-learnability:

Theorem. (Fundamental Theorem of Statistical Learning) Let H be a hypothesis class
of binary classifiers X → {0, 1} and let the loss function be the 0-1 loss. The following
are equivalent:

(1) H has finite VC-dimension.
(2) H is agnostic PAC-learnable.
(3) H is PAC-learnable.
(4) Any ERM rule (minimizing empirical error) is an agnostic PAC-learner for H.
(5) Any ERM rule (minimizing empirical error) is a PAC-learner for H.

IfH has finite VC-dimension, not only can we use it to learn any function, but we can
do so by minimizing empirical error which we can actually calculate. Note here that
we get both agnostic PAC-learnability and PAC-learnability since we chose a specific
loss function that returns a probability, but it is sufficient to have either.

The intuitive reason why we want the VC-dimension to be finite is that the set of
all functions from 𝐶 to {0, 1} is very large, and if 𝐶 is infinite, a bigger infinity.4 If we
have an infinite number of hypotheses to use for some adversarial example, we have
no way of picking between them. By having everything, we know nothing.

6. Threshold Functions and Halfspaces

We can immediately apply VC-dimension to analyze some binary classifiers and see
if they are PAC-learnable. The first we will cover is the hypothesis class of threshold
functions. A threshold function is defined as:

1𝑐(𝑥) = {0 if 𝑥 < 𝑐
1 otherwise

To show a hypothesis class has VC-dimension 𝑑, we want to show that there exists
a set of size 𝑑 that can be shattered (the maximal subset) and that no subset of size
𝑑+ 1 can be shattered. For threshold functions, we can always shatter a single point
by placing the threshold left or right of it. Suppose we have a subset {3, 5} and label
them {1, 0} respectively. By definition, if the threshold function labels 5 as 0, then 3
is also labeled 0, and vice versa, if 3 is labeled 1, 5 must also be labeled 1. Thus we
cannot shatter this subset and the VC-dimension of threshold functions is 1.

A more useful example is that of halfspaces. Halfspaces extend the idea of splitting
the real line in two to arbitrary dimensions, and can be flipped around as well. A
halfspace in 𝑑 dimensions is given by:

𝐻𝑆𝑑(x) = sign(⟨w,x⟩ + 𝑏)
The vector w is the normal vector to a splitting plane, which is then offset by the
“bias” 𝑏. The sign function tells us what side of the plane x is on. If it is on the side
of the plane w points to, it is labeled 1, otherwise it is labeled -1. Training halfspaces
can be done with linear programming.

4Specifically what that bigger infinity is is called the continuum hypothesis, which is undecidable
under ZFC.
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Figure 1. A visual example of a halfspace in 2 dimensions.

For a halfspace in 𝑑 dimensions, it turns out the VC-dimension is 𝑑 + 1. First, we
can rewrite the formula for halfspaces by noting that if we do the changes

w’ = (𝑏, 𝑤1, 𝑤2, … 𝑤𝑑)

x’ = (1, 𝑥1, 𝑥2, … 𝑥𝑑)

we absorb the bias into the dot product:

⟨w,x⟩ + 𝑏 = ⟨w’,x’⟩
This is called a homogenous halfspace over ℝ𝑑. It’s easier to prove the VC-dimension
in this form, but note that we’ve added one more dimension to our halfspace. Thus if
we show the VC-dimension of a homogenous halfspace in 𝑑 dimensions is 𝑑, that is
equivalent to showing the VC-dimension of regular (nonhomogenous) halfspaces in 𝑑
dimensions to be 𝑑+ 1.

Let 𝐶 be a set of 𝑑 + 1 vectors 𝑥𝑖 in ℝ𝑑. From linear algebra, we know that the
maximal size of a spanning set in ℝ𝑑 is 𝑑. Therefore, there exist nonzero 𝑎𝑖 such that

𝑑+1

∑
𝑖=1

𝑎𝑖x𝑖 = 0

Let 𝐼 be the set of positive 𝑎𝑖 and 𝐽 be the set of negative 𝑎𝑖. We can split the above
sum into

∑
𝑖∈𝐼

𝑎𝑖x𝑖 = ∑
𝑗∈𝐽

|𝑎𝑗|x𝑖

Next, suppose we can shatter 𝐶. This means that the normal vector to our splitting
plane is w such that ⟨w,x𝑖⟩ > 0 for all 𝑖 ∈ 𝐼 and ⟨w,x𝑗⟩ < 0 for all 𝑗 ∈ 𝐽. Therefore

0 < ∑
𝑖∈𝐼

𝑎𝑖⟨x𝑖,𝑤⟩ = ⟨∑
𝑖∈𝐼

𝑎𝑖x𝑖,w⟩ = ⟨∑
𝑗∈𝐽

𝑎𝑗x𝑗,w⟩ = ∑
𝑗∈𝐽

|𝑎𝑗|⟨x𝑗,𝑤⟩ < 0

which is a contradiction. We have shown that for homogenous halfspaces, the VC-
dimension is 𝑑. Therefore the VC-dimension of nonhomogenous halfspaces is 𝑑+ 1.
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7. Decision Trees

Decision trees are some of the most common and useful models in modern ML. A
decision tree is a tree where each internal node is a decision node and each leaf node
is a prediction node. When inputting a data point, the decision tree sends that point
to one of the leaf nodes depending on the decisions taken in the internal nodes and
returns the output in the leaf node.

Figure 2. A hypothetical binary classification decision tree, used to classify website requests
into benign or malicious. Sourced from https://www.elastic.co/blog/benchmarking-binary-
classification-results-in-elastic-machine-learning

The input to a decision tree model is a dataset with 𝑑 dimensions. In the above
example, 𝑑 = 3 and the three dimensions are IP, kilobytes, and milliseconds. Each
decision node is an inequality on one of the dimensions. We already covered threshold
functions, which are inequalities on a single dimension; therefore, we can think of a
decision tree as a composition of threshold functions in ℝ𝑑.

At each decision node of the decision tree, we use the threshold to split ℝ𝑑 into two
cells, one for each child of the decision tree. It follows that the decision tree splits ℝ𝑑

into 𝑘 cells where 𝑘 is the number of leaf nodes. Thus a decision tree can shatter any
subset of size 𝑘, and so the VC-dimension of a decision tree is 𝑘. With the restraint
that decision trees cannot be infinite, we have that the VC-dimension is finite and
therefore decision trees are PAC-learnable.
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