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1. Introduction: The World Through a Topological Lens

Topology, often dubbed as ”rubber sheet geometry,” deals with properties of spaces that
remain unchanged under continuous deformations. A classic analogy in topology is that
of a coffee mug and a donut (or torus). Though they appear distinct, from a topological
perspective, they are equivalent because one can be continuously deformed into the other
without tearing or gluing.

Mathematically, we can represent this idea as:

Coffee Mug ∼ Donut

This doesn’t mean that coffee mugs and donuts are identical; otherwise, nobody would be
able to drink coffee without spilling it everywhere. Rather, it means that the two surfaces
have the same topological properties. Both a coffee mug and a donut have one ”hole”, with
the coffee mug’s hole the handle and the donut’s hole the donut hole.

Studying spaces this way gives us more powerful tools to understand their properties,
which has major implications in not only the modern program of mathematics but in other
fields from physics to data science. We will begin with a classic historical problem and follow
the evolution of topology, culminating in modern applications.

2. The Bridges of Königsberg

Figure 1. The original seven bridges of Königsberg, and their graph representation.

The city of Königsberg in Prussia (now Kaliningrad, Russia) was built around both sides
of the Pregel River and included two large islands connected to each other and the mainland
by seven bridges. The mayor wanted to show off his city and its seven bridges to visitors, so
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he asked the mathematician Leonhard Euler in the 18th century what path he should take
to walk over each bridge exactly once.

To solve this, Euler abstracted the problem. Each landmass became a node, and each
bridge an edge between these nodes. Euler had thus invented the concept of a graph, and
the problem became: is there a path on the graph that crosses every edge exactly once?

From this abstracted perspective, we can ascertain the answer ourselves. Every time a
path enters a node from one edge, it needs to leave the node from a different edge, accounting
for two edges every time we pass that node. This means that except for the first and last
nodes, every node needs to have an even number of edges.

However, the graph has no nodes with even edges, with 3 nodes having 3 edges and one
node having 5 edges. Thus we cannot cross the seven bridges with a path that crosses each
exactly once.

Graph theory started here, and while it wasn’t apparent until Poincaré, so did the ideas
of topology. The question being asked was about a path on the ”surface” of the city, with
the rivers its ”holes.” The need to formalize what surfaces are would go on to create the field
of topology.

3. Euler’s Formula on Polyhedra

Euler showed a formula on polyhedra as well. Let F be the number of faces, E the number
of edges, and V the number of vertices of some polyhedron. Then the formula is:

V − E + F = 2

For instance, consider the five Platonic solids:

Tetrahedron: 4− 6 + 4 = 2

Hexahedron: 8− 12 + 6 = 2

Octahedron: 6− 12 + 8 = 2

Dodecahedron: 20− 30 + 12 = 2

Icosahedron: 12− 30 + 20 = 2

Euler’s characteristic, defined as V − E + F, is a topological invariant. This means that
its value (in this case, 2), remains unchanged under continuous deformations. Euler’s char-
acteristic is 2 for all convex polyhedra and the sphere (which can be noted by looking at the
Platonic solids as progressively finer approximations of a sphere).

Figure 2. All these surfaces have Euler characteristic 2!

The power of topological invariants lies in their ability to classify surfaces. Using the Euler
characteristic, the surfaces with Euler characteristic 2 are the sphere and polygonizations
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thereof, which includes all convex polyhedra, soccer balls, and beach balls. We can check
the Euler characteristic of a surface, then, to see if it is a polygonization of the sphere.

If we ask for the additional condition that a surface with Euler characteristic 2 must have
sides that are congruent regular polygons, we get the Platonic solids back.

Figure 3. The five Platonic solids: tetrahedron, hexahedron (cube), octahedron, dodecahedron,
and icosahedron.

4. Genus of a Topological Surface and Betti’s Number for Manifolds

The genus of a surface refers to the number of ”holes” it has. For example, a sphere has
a genus of 0, while a torus (donut shape) has a genus of 1.

Mathematically, the genus (g) of a connected, orientable surface can be related to its Euler
characteristic (χ) through:

χ = 2− 2g

For a torus, which has a genus of 1:

χ = 2− 2(1) = 0

Since χ is a topological invariant, it follows that g is as well. Notice that χ = 2 =⇒ g = 0,
agreeing with our intuition that spheres and polyhedra have no holes.

Betti numbers, introduced by Enrico Betti, are invariants that extend this concept. The
k-th Betti number counts the number of k-dimensional ”holes” in a space. For instance, the
0th Betti number counts the number of connected components, while the 1st Betti number
counts the number of circular one-dimensional holes.

For a torus:

• The 0th Betti number (b0) is 1, indicating a single connected component.
• The 1st Betti number (b1) is 2, indicating two distinct loops that cannot be contin-
uously deformed into each other.
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Betti numbers were introduced to extend the Euler characteristic into higher dimensions.
The Euler characteristic, in every dimension, is the alternating sum of the Betti numbers:

χ =
∞∑
i=0

(−1)ibi

5. Analysis Situs and Henri Poincaré

Analysis Situs was a foundational paper in the field of topology written by the French
mathematician Henri Poincaré in 1895. Poincaré’s insights in this paper laid much of the
groundwork for the future development of topology.

Henri Poincaré. Henri Poincaré (1854-1912) was a towering figure in mathematics and
physics during his lifetime. His work spanned areas like differential equations, number theory,
celestial mechanics, and, of course, topology.

Thesis of Analysis Situs. In Analysis Situs, Poincaré sought to understand the qualitative
properties of geometric objects. Rather than considering the explicit shape of a figure,
Poincaré wanted to understand its intrinsic structural properties, such as how components
of the figure are connected or interwoven.

Major Contributions.

(1) Poincaré’s Fundamental Group: One of Poincaré’s groundbreaking ideas was
the introduction of the fundamental group. For a topological space X and a point
x0 ∈ X, the fundamental group represents the equivalence classes of loops based
at x0. The importance of this concept cannot be overstated, as it gives a method
to quantitatively describe the ”holes” in a space. By considering paths and loops,
Poincaré laid the groundwork for what would become a major branch of study within
algebraic topology.

(2) Homology: Poincaré introduced the precursor to homology, a tool for distinguishing
topological spaces by counting cycles and boundaries in them. The modern viewpoint
of homology groups classifies spaces by the number and type of their ”holes” in each
dimension. Poincaré’s original constructions were foundational in this respect, even
though the formalism has since evolved.

(3) Betti Numbers: The Betti numbers are named after the Italian mathematician
Enrico Betti (1823-1892). Before Poincaré’s foundational work in topology, Betti
made significant contributions to the nascent field. In particular, Betti is known for
his work on the topological invariants of a space, which were later formalized as Betti
numbers. These invariants are derived from what we now call homology groups.

In 1871, Betti introduced a sequence of numbers for a space that aimed to provide a
numerical summary of its topological structure. He was investigating the properties
of surfaces and other spaces by looking at cycles (closed chains) and boundaries.
Essentially, Betti was counting independent cycles that couldn’t be reduced to a point
in each dimension. When Poincaré came onto the scene, he expanded and generalized
many of these ideas in his ”Analysis Situs” and subsequent papers, developing a more
systematic approach to topology. Poincaré’s broader framework included Betti’s
earlier results, but with greater generality and more rigorous definitions.
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Poincaré introduced the notion of Betti numbers, which count the number of inde-
pendent cycles in each dimension. These numbers are essential invariants in topology.
For a space X, if Hn(X) represents its n-th homology group, the n-th Betti number
bn is the rank of Hn(X). These numbers provide a compact way to describe the
topological complexity of a space.

(4) Poincaré Duality: Poincaré duality is a fundamental theorem in algebraic topology
that relates the homology and cohomology of a manifold. It asserts that for an
oriented, closed manifold M of dimension n, there is a natural isomorphism between
its k-th homology group and its (n− k)-th cohomology group.

Mathematical Statement. For a closed, oriented manifold M of dimension n,
Poincaré duality can be expressed as:

Hk(M ;Z) ∼= Hn−k(M ;Z)

where Hk denotes the k-th homology group and Hn−k denotes the (n − k)-th coho-
mology group.

Intuitive Understanding. One can think of Poincaré duality in terms of “holes”
and “fills” within a manifold. Given a k-dimensional “hole” in the manifold, there is
an associated (n− k)-dimensional “fill” which spans the hole. This duality principle
provides a bridge between local and global properties of a manifold.

Examples.
• 2-Dimensional Sphere S2: The homology groups are given by H0(S

2) = Z
(0-dimensional holes), H1(S

2) = 0 (no 1-dimensional holes), and H2(S
2) = Z

(2-dimensional hole corresponding to the interior of the sphere). Using Poincaré
duality, we can immediately deduce the cohomology groups: H0(S2) = Z,
H1(S2) = 0, and H2(S2) = Z.

• Torus: For a torus, T 2, the homology groups are H0(T
2) = Z, H1(T

2) = Z⊕Z⊕
Z, and H2(T

2) = Z. Applying Poincaré duality gives the cohomology groups:
H0(T 2) = Z, H1(T 2) = Z⊕ Z⊕ Z, and H2(T 2) = Z.

Poincaré duality provides a powerful tool in understanding the topological and
geometric properties of manifolds. It allows for computations in lower dimensions to
inform about properties in higher dimensions, and vice versa. It is especially crucial
when investigating manifolds using tools from algebraic topology.

(5) Manifolds: Poincaré had a deep interest in manifolds, which are spaces that locally
resemble Euclidean space. His exploration of the properties and types of manifolds,
especially 3-dimensional ones, set the stage for many later developments in geometry
and topology. His thoughts on the connectivity and structure of manifolds laid the
groundwork for modern manifold theory.

(6) Poincaré Conjecture: Even though this wasn’t directly a part of “Analysis Situs,”
Poincaré’s ponderings on 3-manifolds led to the famous Poincaré Conjecture. This
conjecture suggests that any simply-connected, closed 3-manifold is homeomorphic
to the 3-sphere. The conjecture remained open for a century, becoming one of the
most famous open problems in mathematics, until it was finally proved by Grigori
Perelman in 2003.
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Corrections. Poincaré’s Analysis Situs was revolutionary but wasn’t free from errors. Rec-
ognizing these, he published a series of supplements to correct and refine his work. Notably,
some of the challenges in the initial versions related to the intricacies of the Poincaré Con-
jecture for higher dimensions. Regardless of these corrections, the monumental significance
of the work remains undiminished.

6. Poincaré and the Birth of Chaos Theory

Henri Poincaré, while being one of the most influential mathematicians of his era, inad-
vertently laid the groundwork for chaos theory, a field of study that examines systems that
appear to be disordered or random but are governed by underlying patterns and deterministic
laws.

The Three-Body Problem and the King’s Challenge. In celebration of his 60th birth-
day, King Oscar II of Sweden and Norway posed a mathematical contest: to describe the
behavior of three celestial bodies moving under mutual gravitational influence. This is the
famed three-body problem.

Poincaré took on the challenge and was subsequently awarded the prize for his paper.
However, a twist awaited.

The Mistake and the Discovery. Before Poincaré’s paper entered the public, a minor
error was detected by the astronomer Karl Sundman. In the process of addressing this
oversight, Poincaré stumbled upon a groundbreaking realization. He discovered that even
minuscule variations in the initial conditions of a system could lead to dramatically different
outcomes. This extreme sensitivity to initial conditions is a defining characteristic of chaotic
systems, a phenomenon now colloquially termed the ”butterfly effect”.

Through his analysis, Poincaré discerned that the motion of the three celestial bodies
was predominantly non-periodic, implying that a straightforward, closed-form solution was
elusive. Their trajectories, in fact, displayed behavior that was wildly unpredictable, a
signature trait of chaos.

Legacy. While chaos theory as a full-fledged discipline would only emerge in the mid-20th
century, Poincaré’s pioneering insights marked one of the earliest documented encounters
with chaotic dynamics. His work stands as a testament to the unpredictable turns of math-
ematical exploration and the beauty that can emerge from serendipitous errors.

7. Pulling Lassoes and the Fundamental Group of A Space

Imagine you have a lasso, and you throw it around a pole. No matter how you tug or
stretch the rope, you can’t remove it from the pole without either breaking the loop or lifting
it over the top. We formalize this idea with the fundamental group.

The fundamental group captures the idea of loops in a space. Formally, given a topological
space X and a point x0 in X, the set of loops based at x0 forms a group under the operation
of loop concatenation. This group is denoted as π1(X, x0).
For a space without any ”holes”, like a sphere, the fundamental group is trivial; any loop

can be continuously shrunk down to a point. However, for a torus, there are loops that can’t
be shrunk, giving rise to a non-trivial fundamental group.

Mathematically, for a torus:
π1(Torus) = Z× Z
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This means that there are two independent loops (one around the hole and one around the
handle) that generate all the other loops in the torus.

We use fundamental groups to analyze the structure and properties of spaces on a deeper
level and find ways to differentiate and classify surfaces that might seem superficially similar.

8. Topology and the Goal of the Studies

The study of topology aims to classify all spaces up to some equivalence. That means that
topologists want to understand all possible spaces that could exist. First, let’s formulate what
does a topological space is and what does it mean for two spaces to be the same.

Definition. A topology T on X is a collection of subsets of X, i.e. T ⊆ P(X), such that

(1) ∅, X ∈ T
(2) if U1, U2 ∈ T , then U1 ∩ U2 ∈ T
(3) if {Ui}i∈I ⊆ T , then

⋃
i∈I Ui ∈ T .

We call the pair (X, T ) a topological space.

The precise mathematical formulation of continuous deformation is known as a continuous
function. That means, the map send one space to another in a “continuous” fashion, that
does not tear the space apart in any way. More precisely,

Definition. Given two topological spaces X and Y , a map f : X → Y is called continuous
if for all V ⊆ Y is open, f−1(V ) ⊆ X is open.

We say two topological spaces are “the same” is they are homeomorphic. That is

Definition. If a continuous map f : X → Y between two topological spaces is a homeomor-
phism is there exists an continuous inverse. I.e. there exists g : Y → X such that f ◦g = idX

and g ◦ f = idY , where id is the identity map that send everything to itself.

Intuitively, that means we have a bijective map that continuously match every piece in X
to Y and there is a way to go back. Or, every piece in X has exactly one counterpart in Y .
For example,

Coffee Mug ∼ Torus

means that there exists a homeomorphic map between the two spaces.
The goal of topology is to classify spaces up to homeomorphism. So we want to identify

all the spaces that are not “the same”. Note that homeomorphism is a topological definition
of “the same”, which certainly is not the same in, say, differential geometry.

9. Path, Loop, and Homotopy

It is easy to show two spaces are homeomorphic. However, how do we know if two spaces
are not homeomorphic? By definition, we need to show that for any continuous function,
there does not exists a continuous inverse. This is very hard to check.

However, recall that hemeomorphism means two spaces are “the same”. Hence their
topological properties should be the same as well. For example, if we can show that one
space is connected and the other is not, we know that they cannot be the same. This is what
we called topological invariants.

More formally, if there are two connected components of space X and one connected
component for space Y , then it is not possible to create a homeomorphism in between them.
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Or, we need to smash the two connected components somehow, or tear Y apart into two
pieces.

A more useful topological invariants are given by path.

Definition. Given a topological space X, a path is a continuous function p : [0, 1] → X with
f(0) = x0 and f(1) = x1. We write

p : x0 ⇝ x1 ∈ X

for a path p.

Definition. A loop is a path ℓ : x0 ⇝ x0 ∈ X. That is, a path that begin and ends at the
same point.

Note that because ℓ(0) = ℓ(1), we can identity the two points in preimage. That means,
a loop is a map ℓ : S1 → X.
Now we want to describe when two paths are equivalent in a space. That means, when

two paths convey the same topological data. This is what we call homotopy.
Two loops, γ1 and γ2, based at x0 are said to be homotopic if there exists a continuous

map H : [0, 1]× [0, 1] → X called a homotopy, such that:

• H(s, 0) = γ1(s) for all s ∈ [0, 1],
• H(s, 1) = γ2(s) for all s ∈ [0, 1],
• H(0, t) = H(1, t) = x0 for all t ∈ [0, 1].

Two loops are said to be homotopic if one can be continuously deformed into the other
without breaking the loop or leaving the space X.

10. Fundamental Group and Higher Homotopy Groups

The fundamental group, also known as the first homotopy group, is a central concept in
algebraic topology that captures the essence of loops within a topological space. Introduced
by Henri Poincaré, this group quantifies the different ways one can traverse loops in the
space without tearing or pinching it.

The fundamental group or the first homotopy group of X at x0, denoted by π1(X, x0),
is the set of all homotopy classes of loops at x0, where the group operation is given by loop
concatenation.

Theorem. Given a topological space X and some base-point x0. The fundamental group
π1(X, x0) is in fact a group.

Proof. To prove that the fundamental group, denoted by π1(X, x0), of a topological space
X with base point x0 is a group, we need to verify the group axioms. The operation on the
group is given by loop concatenation.

Closure under Concatenation. Given two loops α and β in X based at x0, their
concatenation α ∗ β is also a loop in X based at x0. This is constructed by traveling along
α for the first half of the unit interval and along β for the second half. Formally, the
concatenation α ∗ β is defined as:

(α ∗ β)(s) =

{
α(2s) if 0 ≤ s ≤ 1

2

β(2s− 1) if 1
2
≤ s ≤ 1
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Associativity. Given three loops α, β, and γ in X based at x0, we need to show that
(α∗β)∗γ = α∗(β∗γ). This comes directly from the definition of the concatenation operation
and the reparametrization of the loops.

Existence of an Identity. The constant loop ex0 at the base point x0, where ex0(s) = x0

for all s ∈ [0, 1], acts as the identity for the loop concatenation operation. For any loop α
based at x0, we have α ∗ ex0 = ex0 ∗ α = α.
Existence of Inverses. For every loop α in X based at x0, there exists an inverse loop

α−1 which is α traversed in the reverse direction. Formally, α−1(s) = α(1 − s). Thus,
α ∗ α−1 = α−1 ∗ α = ex0 . □

The fundamental group is a powerful topological invariant. Spaces with non-isomorphic
fundamental groups cannot be homeomorphic, making the fundamental group a crucial tool
in distinguishing different topological spaces. However, the fundamental group is not suffi-
cient in determining the topological structure (nor is any topological invariant in general).
But it provides a way for us to distinguish between spaces and their underlying topological
properties.

While the fundamental group captures the nature of loops in a space, one can naturally ask
about higher-dimensional analogues. This leads to the concept of higher homotopy groups.

For n > 1, the n-th homotopy group, πn(X, x0), is defined using maps from the n-
dimensional unit sphere Sn into X that send a designated base point of the sphere to x0.
As with loops, two such maps are considered equivalent if one can be continuously deformed
into the other within X.

These higher homotopy groups provide information about the n-dimensional ”holes” in
the space. Interestingly, for n > 1, the groups πn(X) are abelian.

11. Homology Group

Homology groups provide a sequence of abelian groups (or modules) associated with a
topological space, effectively quantifying its topological features of various dimensions, such
as connected components, loops, and voids. Developed as a tool to classify and distinguish
different topological spaces, homology captures the algebraic invariants of a space.

Simplicial Complexes and Chains. Before delving into homology groups, one must un-
derstand the foundational idea of simplicial complexes.

A simplicial complex K in Rn is a collection of simplices such that:

• Every face of a simplex from K is also in K.
• The intersection of any two simplices in K is a face of each.

A k-simplex is the convex hull of k + 1 affinely independent points. For example, a 0-
simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, and so on.

Given a simplicial complex, a k-chain is a formal sum of k-simplices with coefficients in
a field, typically Z (integers). The set of all k-chains forms a group Ck(K), called the k-th
chain group.

Boundary Operator. The boundary operator, denoted ∂, is a function that, given a k-
simplex, returns a (k−1)-chain representing its boundary. For a given simplex, the boundary
is formed by its faces.

The boundary operator has the critical property that its composition with itself is zero:
∂k−1 ◦ ∂k = 0. This property indicates that the boundary of a boundary is always empty.
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Homology Defined. Using the boundary operator, one can define the k-th homology group
Hk(K) of a simplicial complex K as:

Hk(K) = ker(∂k)/im(∂k+1)

where ker(∂k) denotes the kernel of ∂k (the k-chains that are sent to 0) and im(∂k+1) denotes
the image of ∂k+1.
Intuitively, the k-th homology group measures the k-dimensional ”holes” in K. For ex-

ample:

• H0(K) counts the connected components.
• H1(K) captures loops not bounding a 2-simplex.
• H2(K) represents voids surrounded by 2-simplices but not filled by 3-simplices, and
so forth.

Example. For a circle S1, H0(S
1) ∼= Z (one connected component) and H1(S

1) ∼= Z (one
loop).

Example. For a 2-dimensional sphere S2, H0(S
2) ∼= Z (one connected component), H1(S

2) =
0 (no loops), and H2(S

2) ∼= Z (represents the 2-dimensional void inside the sphere).

Homology groups provide a powerful and systematic way to study topological spaces.
They assign sequences of abelian groups to a space, encapsulating its topological features
at different dimensional levels. Moreover, homology groups are functorial; they respect
continuous maps, making them invaluable for comparing different topological spaces.

12. Topological Data Analysis

Topological Data Analysis (TDA) is a field that bridges methods from pure topology
and applied statistics to study the qualitative features of data. This approach focuses on
understanding the ”shape” or intrinsic structure of data.

∆-Complex. The ∆-complex is a generalization of a simplicial complex, allowing for more
flexibility in its structure, which is particularly useful for applications in TDA. A ∆-complex
is a space X that is pieced together from standard simplices in the following manner:

(1) Every n-simplex ofX is homeomorphic to the standard n-simplex ∆n = {(t0, . . . , tn) ∈
Rn+1 |

∑
ti = 1, ti ≥ 0}.

(2) The intersection of any two simplices of X is a face of each of them.

Filtration. Filtration is a foundational concept in TDA that provides a multi-scale per-
spective on data. Given a ∆-complex K, a filtration is a nested sequence of subcomplexes:

∅ = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K

where each Fi is a subcomplex of K. The intuition behind filtrations is to observe the
evolution of topological features as the scale or resolution changes, allowing for the detection
of persistent structures in the data.

Persistent Homology. Persistent homology is a central tool in topological data analysis
(TDA) that quantifies the topological features of a space at various spatial resolutions. More
specifically, it captures how topological features—such as connected components, loops, and
voids—emerge and persist as one progresses through a filtration of a topological space.
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Basics. Given a filtration:

∅ = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K

where each Fi is a subcomplex of a topological space K, the idea is to track the birth and
death of topological features as we move through the filtration.

For each index i, compute the homology groups Hk(Fi) for every dimension k of interest
(often 0 for connected components, 1 for loops, etc.). A topological feature is said to be
”born” in Fi if it appears in Hk(Fi) but was not present in Hk(Fi−1). Similarly, a feature
”dies” transitioning from Fi to Fi+1 if it is no longer present.

Intervals and Barcodes. For each homological feature, we track its birth time b and
death time d. Each such feature is represented by an interval [b, d). The end collection
of these intervals across all dimensions is visualized as a ”barcode.” Each interval in the
barcode represents the persistence of a topological feature: the longer the interval, the more
”persistent” or robust the feature is across scales.

Persistence Diagrams. An alternative representation to barcodes is the persistence dia-
gram. Each topological feature is represented by a point (b, d) in the plane, where b is the
birth time and d is the death time. Features that persist indefinitely have their points lying
on the line d = ∞.
The persistence diagram provides a visual representation of the significance of each feature:

points far from the diagonal correspond to features that have high persistence, while those
close to the diagonal represent ephemeral features.

Stability Theorem. One of the fundamental results regarding persistent homology is its
stability. The persistence diagrams resulting from two filtrations close to each other (in a
suitable metric sense) will also be close. More formally, if you perturb your data slightly, the
persistence diagram will not change drastically. This stability result underpins the robustness
of persistent homology as a tool in data analysis, ensuring that minor changes or noise in
the data will not lead to major changes in its topological summary.

13. Topological Data Analysis in Neuroscience

Topological data analysis (TDA) and algebraic topology provide robust mathematical
frameworks for interpreting the intricate structures and datasets prevalent in neuroscience.
The techniques inherent in TDA offer a unique lens to study and understand various facets
of neural systems.

Brain Network Connectivity. Neural networks in the brain form a complex topological
space. While traditional graph theory approaches capture the elementary aspects of this
network, topological techniques delve deeper:

Neural Network
TDA−−−→ Higher-dimensional features

Methods like persistent homology detect cycles, loops, and cavities, providing a more
nuanced understanding of the brain’s connectivity patterns.
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Neural Codes. A fundamental problem in computational neuroscience is deciphering the
representation of information in neural populations. Mathematically, this can be described
as:

Neural Activity
TDA−−−→ Combinatorial and Geometric Structures

Topological techniques can effectively interpret the structure of neural activity, offering
insights into the underlying ’neural code’.

fMRI Data Analysis. Functional Magnetic Resonance Imaging (fMRI) datasets, denoted
as D, can be seen as high-dimensional topological spaces. Analyzing D using TDA extracts
salient topological features, offering a more comprehensive understanding of brain function:

DfMRI
TDA−−−→ Brain Functional Features

Modeling Disease Progression. Consider a function f(t) representing the topological
structure of brain networks at time t. For neurodegenerative diseases, the derivative df

dt
may

exhibit specific patterns indicative of disease progression.

Neural Population Activity. Given a neural population space N , topological methods
provide a mapping:

N TDA−−−→ Dynamical Topological Features

This aids in capturing the collective dynamics of neural populations, associating topolog-
ical features with cognitive processes.

Sensory Processing. In sensory systems, topological methods elucidate how spatial or
temporal patterns, represented as functions fs and ft, are encoded by neural activity:

fs, ft
TDA−−−→ Encoded Neural Patterns

Brain Development. Topological tools analyze the evolution of neural circuits and brain
structures over developmental stages s, providing a mapping:

Brain at stage s
TDA−−−→ Topological Features
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